Satellite Thermal Control Engineering
prepared for "SME 2004"

Philippe.Poinas@esa.int
European Space Agency, Estec, Thermal and Structure Division
Keplerlaan 1, PO Box 299, 2200AG Noordwijk, The Netherlands
Tel +31 715654554, Fax +31 715656142
Satellite Thermal Control Engineering

What you will learn?

1. heat transfer basics
 - conduction
 - radiation
 - importance of thermo-optical properties

2. satellite energy balance
 - from ground to space
 - simple satellite thermal behaviour

3. role
 - why thermal control required?

4. design
 - what is thermal design?
 - which types of S/C design exist?

5. means
 - what to control the flux/temperatures
1. Heat Transfer Basics

Thermal Control Engineering

1. heat transfer basics
2. satellite energy balance
3. role
4. design
5. means

ROSETTA* FM in LSS, dec01

*without Solar Panels
1.1 Satellite Heat Transfer Modes

1. Heat Transfer Basics

1.1 satellite heat transfer modes

1.2 conduction

1.3 radiation

ROSETTA* FM in LSS, dec01

*without Solar Panels
1.1 Satellite Heat Transfer Modes

- **Conduction**
 - between any body
 - eventually by contact through an interface

- **Radiation**
 - main mode of heat transfer in vacuum/space

- **Convection**
 - manned tended satellites (ISS, shuttle, launchers, ascent...)

- **Ablation**
 - combination of 3 and chemical reaction (re-entry vehicles)
1.2 Conduction

1. Heat Transfer Basics
 1.1 satellite heat transfer modes
 1.2 conduction
 1.3 radiation

*without Solar Panels

ROSETTA* FM in LSS, dec01
1.2 Conduction

• **Definition**
 - propagation of energy from particle to particle
 - in solid, liquid or gaseous continuous matter, homogeneous or not
 - without matter displacement

• **Fourier’s Law**
 \[\vec{q} = -k \nabla T \]

- \(\vec{q} \) is the heat flow rate vector (W/m\(^2\))
- \(k \) is the material thermal conductivity (W/m\(^2\).K)
- one-dimensional conduction

\[Q = \frac{k A}{l} (T_h - T_c) \]
Thermal Conductivity

- Copper
- Aluminium
- AA5083-T0
- 304 ss
- G-10 // to warp
- Ti
- Epoxy
- PE //
- Cu-Ni (70-30)
- Brass Cu-Zn (90-10)
- Mylar PET amorphous
1.3 Radiation

1. Heat Transfer Basics
 1.1 satellite heat transfer modes
 1.2 conduction
 1.3 radiation

ROSETTA* FM in LSS, dec01

*without Solar Panels
1.3 Radiation

- **Characteristics**
 - propagation of electro-magnetic energy in straight line
 - between surfaces separated by
 - absorbing, scattering media
 - or in vacuum
 - hence without matter displacement
 - reflected, absorbed or transmitted on surrounding bodies

- **Source**
 - thermal agitation of particles
1.3 Radiation - Black Body

- **Black Body**
 - is real or fictitious surface
 - that absorbs all incident radiant energy i.e.
 - from every direction
 - at every wavelengths
 - isotropic emitter
 - radiated energy depends only on temperature

- **Black Body Emitted Energy**

 Planck's Law
 \[
 E_{\lambda,T} = \frac{2\pi h c^2}{\lambda^5} \frac{h c}{e^{\frac{h c}{k_B \lambda T}} - 1} (W/m^2 \mu m)
 \]

 Stefan-Boltzmann's Law
 \[
 E_{bb,T} = \sigma T^4 (W/m^2)
 \]

\[\begin{align*}
\alpha(\theta, \lambda) &= \alpha = 1 \\
\varepsilon(\theta, \lambda) &= \varepsilon = 1
\end{align*}\]
1.3 Radiation – Black Body

Planck and Stefan-Boltzmann Laws

\[E_{\lambda, T} = \frac{2 \pi \sigma \lambda^5}{e^{\frac{\lambda}{kT}} - 1} \]

\[E_{\lambda, T} = \sigma T^4 \]

- SUN: \(5776 \text{ K} \)
- EARTH: \(255 \text{ K} \)

Area = \(\sigma T^4 \)
1.3 Radiation - Real Body

- can absorb, reflect or transmit radiation energy

\[\Phi_\lambda \text{ incident} \quad \rho_d \Phi_\lambda \text{ diffusely reflected} \quad \rho_s \Phi_\lambda \text{ specularly reflected} \quad \alpha \Phi_\lambda \text{ absorbed} \quad \tau \Phi_\lambda \text{ transmitted} \]

- all parameters are wavelength and angular dependent

- general case: semi-transparent

\[\alpha(\lambda) + \rho(\lambda) + \tau(\lambda) = 1 \]

\[\rho = \rho_s + \rho_d \]

- opaque

\[\tau(\lambda) = 0 \]

hence

\[\alpha(\lambda) + \rho(\lambda) = 1 \]
1.3 Radiation - Real Body

- **Surface Emissivity**
 - ratio of surface radiated energy to that of a black body at the same T
 - always <1 for a real surface

\[
\varepsilon(\theta, \lambda) = \frac{\int_0^\infty \alpha_{\lambda,T} E_{\lambda,T} \, d\lambda}{\int_0^\infty E_{\lambda,T} \, d\lambda} < 1
\]

for a black body $\varepsilon(\theta, \lambda) = \varepsilon = 1$

- depends on direction θ and wavelength λ of emitted energy
- therefore can be
 - directional (d) or hemispherical (h)
 - spectral (s) or total (t)
 - averaged over all directions, wavelengths or both
1.3 Radiation - Real Body

- **Surface Absorptivity**
 - ratio of surface absorbed energy to incident energy
 - always <1 for a real surface

\[
\alpha(\theta, \lambda) = \frac{\int_0^\infty \alpha_{\lambda,T} E_{\lambda,T} d\lambda}{\int_0^\infty E_{\lambda,T} d\lambda} < 1
\]

for a black body \(\alpha(\theta, \lambda) = \alpha = 1 \)

- depends on incident energy direction \(\theta \) and wavelength \(\lambda \)
- therefore can be
 - directional (d) or hemispherical (h)
 - spectral (s) or total (t)
 - averaged over all directions, wavelengths or both
1.3 Radiation - Real Body

• Absorptivity vs Emissivity
 - for a given direction θ and at any wavelength λ

2nd Kirchoff’s Law

$$\alpha(\theta, \lambda) = \varepsilon(\theta, \lambda) \quad \forall \theta, \forall \lambda$$

- in general hemispherical total values are different

$$\alpha \neq \varepsilon$$

because

- α and ε have a strong wavelength dependence

- source temperature of incident radiation (Sun at 5776 K) different than surface temperature (satellite -250 -> 300°C)
1.3 Radiation - Real Body

- Solar Absorptivity α_S and Hemispherical Emissivity ε_H

α_S is the solar absorptivity \Rightarrow refers to UV wavelengths
$\alpha_S = \varepsilon_S$ integrated over 0.2-2.8 μm i.e. 95% solar spectrum

ε_H is the hemispherical emissivity \Rightarrow refers to IR wavelengths
$\alpha_H = \varepsilon_H$ integrated over 5-50 μm i.e. body at -250/300°C

but $\alpha_S \neq \varepsilon_H$ because the spectra are different
1.3 Radiation - Data

- **Spectral Reflectance** ρ
 - Zinc Oxide Potassium Silicate Coating

- **Black Body Emittance**
 - integration over solar (5776K) wavelengths
 - $\alpha_s=0.20$
 - integration over infrared black body (300K) wavelengths
 - $\varepsilon_h=0.87$

![MAP PSG120-FD Reflectance](image)
1.3 Radiation - Data

- Typical Values

<table>
<thead>
<tr>
<th>Finish</th>
<th>α_S</th>
<th>ϵ_H</th>
<th>α_S/ϵ_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>VD Au</td>
<td>0.23</td>
<td>0.03</td>
<td>9.20</td>
</tr>
<tr>
<td>VDA</td>
<td>0.15</td>
<td>0.05</td>
<td>3.00</td>
</tr>
<tr>
<td>black paint</td>
<td>0.94</td>
<td>0.81</td>
<td>1.16</td>
</tr>
<tr>
<td>white paint</td>
<td>0.20</td>
<td>0.88</td>
<td>0.23</td>
</tr>
<tr>
<td>SSM (Ag 2 mils)</td>
<td>0.10</td>
<td>0.60</td>
<td>0.17</td>
</tr>
<tr>
<td>OSR</td>
<td>0.09</td>
<td>0.82</td>
<td>0.11</td>
</tr>
</tbody>
</table>
1.3 Radiation - Black Body

- Radiated Energy between Black Bodies

\[Q_{ij} = A_i F_{ij} \sigma \left(T_i^4 - T_j^4 \right) \]

with \(F_{ij} \), the view factor between surface i and surface j

or

\[Q_{ij} = A_i \sigma \left(T_i^4 - T_j^4 \right) \]

when \(F_{ij} = 1 \)
2. Satellite Energy Balance

Thermal Control Engineering

1. heat transfer basics
2. satellite energy balance
3. role
4. design
5. means

ROSETTA* FM in LSS, dec01

*without Solar Panels
2. Satellite Energy Balance

WHAT HAPPENS from
GROUND
to
SPACE?
2. Satellite Energy Balance - Thermal Environment

• Ultra-high Vacuum, $10^{-14} \text{ bar} < p < 10^{-17} \text{ bar}$ => no convection
 - temperature levels

• Deep Space, @ 2.7 K
 - imbalance, temperature levels and gradients

• Solar Eclipse
 - SSO SPOT, ENVISAT 32 mn
 - GEO MSG 72 mn
 - HEO CLUSTER 5 h max
2. Satellite Energy Balance - Thermal Environment

- intense Solar Flux, $SC=1367 \text{ W/m}^2 \text{ @ 1 AU}$
 - imbalance, temperature levels and gradients

$$\Phi_s = \frac{SC}{d_s^2}$$
2. Satellite Energy Balance - Thermal Environment

- **Albedo Flux**
 - reflected by Sun illuminated side of Planet
 - albedo = ratio of solar reflected energy to local solar flux
 - Earth albedo

 \[a_E = 0.33 \pm 0.13 \text{ equivalent to } 410 \text{ W/m}^2 \]
 - \(a_E \) varies with landscape
 - clouds 0.4-0.8
 - forest 0.05-0.10
 - ocean 0.05

- **Planet Flux**
 - infrared energy radiated by the Planet
 - Earth=blackbody @255 K (-18 °C)
 - equivalent to 240 W/m²
Equilibrium Temperature of a Sphere from Ground to Space

Temperature (degC) vs. Altitude (km)

- Black
- White
- Gold
- Air
2. Satellite Energy Balance - Black Sphere

- **Assumptions**
 - satellite=black sphere hence $\alpha=\varepsilon=1$
 - infinitely conductive, deep space at 0 K
 - low orbit around Earth
- **in Sun**
 - no Planet, no albedo

\[
\left(\pi \, r^2\right) q_s = \left(4 \pi \, r^2\right) \sigma \, T^4
\]

\[
\frac{q_s}{4} = \sigma \, T^4
\]

$T = 5^\circ C$
2. Satellite Energy Balance - Black Sphere

- in Sun with Earth
 - no albedo

\[
\left(\pi r^2 \right) q_s + F \left(4 \pi r^2 \right) \sigma T_E^4 = \left(4 \pi r^2 \right) \sigma T^4
\]

\[
\frac{q_s}{4} + \frac{\sigma T_E^4}{2} = \sigma T^4
\]

\(T = 27^\circ C \) \(\Delta T = 22^\circ C \)
2. Satellite Energy Balance - Black Sphere

- in Sun with Earth and Albedo

\[
\left(\pi r^2\right) q_S + F(4\pi r^2)\sigma \bar{T}_E^4 + F(4\pi r^2) a q_S = \left(4\pi r^2\right)\sigma \bar{T}_E^4
\]

\[
\left(\frac{1}{4} + \frac{a}{2}\right) q_S + \frac{\sigma \bar{T}_E^4}{2} = \sigma \bar{T}^4
\]

\(\bar{T} = 56^\circ C\)

\(\Delta \bar{T} = 29^\circ C\)
2. Satellite Energy Balance - Real Body

\[
q_s = F_{i,s} A_i a_i \quad \text{solar absorbed}
\]

\[
q_s a F_{i,a} A_i a_i \quad \text{albedo absorbed}
\]

\[
Q_r = e_i A_i F_{i,\text{space}} s (T_i^4 - T_{\text{space}}^4) \quad \text{radiated to deep space}
\]

\[
Q_p = e_i A_i F_{i,p} s (T^4 - T_p^4) \quad \text{radiated to planet}
\]
2. Satellite Energy Balance - Real Body

• Real Body in Sun
 - assumes that body in infinitely conductive, no albedo, no planet flux
 - assumes that sink temperature is 0 K (not far from deep space)

\[T = \frac{4 \sqrt{\frac{\alpha}{\varepsilon}} F_s}{4 \sqrt{\frac{A_s}{A}}} q_s \]

where \(F_s \) is the projected area

\[F_s = \frac{A_s}{A} \]

T is independent of area \(A \)
depends only of \(\alpha/\varepsilon \)

with \(q_s = 1367 \) W/m\(^2\)
For $\theta=0$, $T_S = 0$ K and $q_s = 1367$ W/m2

<table>
<thead>
<tr>
<th>(W/m2)</th>
<th>(\text{-})</th>
<th>black body</th>
<th>white paint PSG120-FD</th>
<th>black paint Electrodag 501</th>
<th>VDAu</th>
<th>VDA</th>
<th>sand-blasted Al</th>
<th>black CFRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>α</td>
<td>1.00</td>
<td>0.20</td>
<td>0.94</td>
<td>0.23</td>
<td>0.15</td>
<td>0.20</td>
<td>0.90</td>
</tr>
<tr>
<td>1367.0</td>
<td>ε</td>
<td>1.00</td>
<td>0.88</td>
<td>0.81</td>
<td>0.025</td>
<td>0.05</td>
<td>0.20</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>α/ε</td>
<td>1.00</td>
<td>0.23</td>
<td>1.16</td>
<td>9.20</td>
<td>3.00</td>
<td>1.00</td>
<td>1.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface</th>
<th>F_S</th>
<th>A_p / A</th>
<th>Steady-State Temperature (degC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-s plate</td>
<td>1</td>
<td>1.00</td>
<td>121 -1</td>
</tr>
<tr>
<td>2-s plate</td>
<td>1/2</td>
<td>0.50</td>
<td>58 -44</td>
</tr>
<tr>
<td>cylinder</td>
<td>1/\pi</td>
<td>0.32</td>
<td>23 -69</td>
</tr>
<tr>
<td>sphere</td>
<td>1/4</td>
<td>0.25</td>
<td>5 -81</td>
</tr>
<tr>
<td>cube</td>
<td>1/6</td>
<td>0.17</td>
<td>-21 -99 -12</td>
</tr>
</tbody>
</table>

Play with α/ε ratio
2. Satellite Energy Balance - Real Body

- **Steady-state: General Case**
 - assumes that body in infinitely conductive
 - solar, albedo and planet fluxes
 - view factor to sink temperature at \(T_s \neq 0 \) K

\[
q_a = a q_s - q_p
\]

- \(F_s, F_a, F_p \) solar, albedo, planet factors (\(-\))
- \(q_s, q_a, q_p \) solar, albedo, planet fluxes (W/m\(^2\))

- \(a \) albedo factor (\(-\))
- \(\alpha \) solar absorbtivity (\(-\))
- \(T_s \) sink temperature (K)
- \(\varepsilon \) infrared emissivity (\(-\))
- \(B_s \) Gebhart factor to sink (\(-\))
- \(A \) radiative area (m\(^2\))
- \(Q \) power dissipation (W)

\[
\varepsilon A B_s \sigma (T^4 - T_s^4) = \alpha F_s A q_s + \alpha F_a A q_a + \varepsilon F_p A q_p + Q
\]
2. Satellite Energy Balance - Real Body

when sink T_s surrounds ($B_S=1$) body at T and only solar flux q_s

\[
T = 4 \sqrt{\frac{\alpha}{\varepsilon} \left(F_s + a F_a \right) q_s + \frac{F_p}{B_S} T^4 + T_s^4 + \frac{Q}{\varepsilon A B_S \sigma}}
\]
2. Satellite Energy Balance - Examples

ULYSSES (1989)
2. Satellite Energy Balance - Examples

ISO
(1995)
2. Satellite Energy Balance - Examples
3. Role

Thermal Control Engineering

1. heat transfer basics
2. satellite energy balance
3. role
4. design
5. means

*without Solar Panels

ROSETTA* FM in LSS, dec01
3. Role

- maintain within Specified Ranges
 - temperatures
 - temperature gradients (K/length)
 - temperature stability (K/time)
 - radiative/conductive heat flow (W)

On Board Data Compression Unit (ALS)

SPOT 5 Solid State Recorder (ALS)
3. Role

• of What?
 - electronic units
 - instrument e.g. optical bench
 - S/C structure
 - interface between modules

Visual Monitoring Camera (AST)
3. Role - Typical Requirement

- **Narrow Temperature Ranges**
 - electronics equipment
 - classical equipment: \([-10, +40]\) °C
 - battery: \([0, +20]\) °C
 - propulsion system: \([+10, +50]\) °C

- **limited Temperature Gradients**
 - \(\Delta T\) < 5°C across optical instrument (1.5 m)
 - \(\Delta T/\Delta x\) < 2°C/m for structural element
 - \(\Delta T\) < 5°C between MMH and NTO tanks

- **Stable Temperatures**
 - \(\Delta T/\Delta t\) < 5 K/h for typical electronic unit
 - \(\Delta T/\Delta t\) < 0.1 K/\(\text{mn}\) for CCD camera
 - \(\Delta T/\Delta t\) < 100 µK/\(\text{mn}\) for cryogenic telescope

- **Why is it so important?**
 - low temperatures for reliability of components
 - narrow temperature ranges for sensitivity of detectors, units
 - small temperature gradients for pointing of instruments, S/C
4. Design

Thermal Control Engineering

1. heat transfer basics
2. satellite energy balance
3. role
4. design
5. means

*without Solar Panels

ROSETTA* FM in LSS, dec01
4. Design

\[
(mC_p)_i \frac{dT_i}{dt} = \sum_j C_{ij} (T_j - T_i) + \sum_j R_{ij} s (T_j^4 - T_i^4) + \sum_j F_{ij} (T_j - T_i) + Q^i + Q^e
\]

* incl. to space
* excl. to planet

stored energy
conducted* flux
radiated* flux (not visualised)
fluid flow
internal loads
external loads
4. Design

Balance HEAT FLOWS to fulfil REQUIREMENTS results in TEMPERATURES

- through Heating
 - absorb from external sources (solar, albedo, planet IR)
 - selective coatings
 - use the internal sources
 - electronic dissipations, MLI insulation efficiency
 - dissipate heat internally
 - heater
 - RTG, RHU
4. Design

- transfer heat from hot area
 - conduction, radiation
 - latent heat of evaporation/condensation

- or through Cooling
 - reject to deep space (3 K)
 - with low α/ε radiative coatings on radiators
 - transfer heat to cold area
 - by conduction,
 - radiation
 - through condensation/boiling in fluid loops or heat pipes
 - through cryogenic techniques
 - cryostats
 - coolers (Peltier, Joule-Thomson...)
 - ablation
4. Design – Radiative Concept

• **Principle**
 - when internal power dissipation small w.r.t. external absorbed energy
 - balance between
 - absorbed incident radiant energy (solar…)
 - emitted radiant energy (σT^4)

• **Characteristics**
 - no insulation
 - average temperature driven by
 - external fluxes
 - local temperature hot spots still possible

• **Application: PROBA1**
4. Design - Insulated Concept

• **Principle**
 - when heat source irradiates few sides
 • Sun, planet IR (Mercury, Mars, Moon)
 - balance between
 • internally dissipated power (P)
 • emitted radiant energy (σT^4)

• **Characteristics**
 - insulation of Sun illuminated sides (MLI)
 - shadow sides
 • with high IR emissivity
 • radiate to deep space => RADIATORS
 - preferred attitude for radiators
 - average temperature driven by
 • internal power dissipation
 - local temperature hot spots still possible
4. Design - Insulated Concept

- Advantages w.r.t. Radiative Concept
 - less sensitive to
 - eclipses
 - external loads changes
 - temperatures are more uniform
 - little ageing of unirradiated coatings

We are between those 2 CONCEPTS
5. Means

Thermal Control Engineering

1. heat transfer basics
2. satellite energy balance
3. role
4. design
5. means

ROSETTA* FM in LSS, dec01

*without Solar Panels
5. Means - Limitations

- **Cooling Limitations**
 - radiator 100 mW at 100 K for 0 W dissipation
 - cryo-coolers 1 W at 50 K for 100 W dissipation
 - liquid He few mW at 4 K for 1 ton/2 years

- **Heat Transport Limitation/Performance**
 - conduction (pure Al tube k=200 W/m.K)

 \[
 \begin{align*}
 1.5 \text{ W @20°C} & \quad l=1.00 \text{ m} \quad \varnothing=2 \text{ cm} \quad \Delta T= 25 \text{ K} \quad m= 0.8 \text{ kg} \\
 11 \text{ kW @20°C} & \quad l=0.70 \text{ m} \quad \varnothing=4.04 \text{ m} \quad \Delta T= 3 \text{ K} \quad m= 24 \text{ t}
 \end{align*}
 \]
 - heat pipe (Al tube)
 - 11 kW @20°C l=0.70 m \(\varnothing=2.5 \text{ cm} \) \(\Delta T= 3 \text{ K} \) \(m= 2 \text{ kg} \)
 - radiation (from a black surface \(\varepsilon=1 \))
 \[
 \begin{align*}
 11 \text{ kW @20°C} & \quad A= 88 \text{ m}^2 \quad \Delta T= 25 \text{ K} \\
 11 \text{ kW @20°C} & \quad A= 27 \text{ m}^2 \quad \Delta T= 290 \text{ K}
 \end{align*}
 \]
5. Means

Passive
- RADIATION
 - coating
 - absorber
 - MLI blanket
 - radiator
- LATENT HEAT-ABLATION
 - TPS
 - PCM

Active
- HEATERS
 - thermostat control
 - electronic control
 - ground control
- HEATPIPES - FLOOPS
 - fixed/variable conductance
 - loop heat pipe
 - monophasic/diphasic fluid
- LOUVRES
 - mechanical
 - electrical

Conduction
- structural material
 - doubler, filler, adhesive
 - washer, strap, bolt, tyrap, stand-off
 - foam

Energy Transfer
- $\alpha \phi_s A$
- $\varepsilon A \sigma T^4$
- $k \frac{A}{l} \Delta T$
5. Means

- **Passive Systems Pros/Cons**
 - no mechanical moving parts or moving fluids, no power consumption
 - simple to design/implement/test
 - low mass and cost
 - highly reliable
 - BUT low heat transport capability
 - except heat pipes

- **Active Systems Pros/Cons**
 - mechanical moving parts or moving fluids or electrical power required
 - complex design
 - generate constraints on S/C design and test configurations
 - high mass and cost
 - less reliable than PTC means
5. Means - PTC - Radiation, Coatings

- controls Heat absorbed by External S/C Surfaces
 - with α, solar absorptivity

- controls Heat radiated to Space
 - with ε, IR emissivity

Coated Sphere Equilibrium Temperature in Sun

$\frac{\alpha}{\varepsilon} = 10$ 500 K
$\frac{\alpha}{\varepsilon} = 2$ 337 K
$\frac{\alpha}{\varepsilon} = 1.5$ 314 K
$\frac{\alpha}{\varepsilon} = 1$ 284 K
$\frac{\alpha}{\varepsilon} = 0.75$ 264 K
$\frac{\alpha}{\varepsilon} = 0.5$ 238 K
$\frac{\alpha}{\varepsilon} = 0.25$ 200 K
5. Means - PTC - Radiation, MLI Blankets

- **Purpose**
 - Insulating material
 - Acts as a radiation barrier
 - Decreases heat flow inside S/C
 - Sun, albedo, IR planet
 - Ascent aerothermal after fairing jettison
 - ME/ABM firing
 - Decreases heat losses from S/C
 - IR energy

- **Principle**
 - Stack of n layers with low emissivity ε
 - Connected only by radiation with limited contact areas
 - Equivalent to reduce the emissivity by n
5. Means - PTC - Radiation, MLI Blankets

- **Standard MLI**
 - stack of thin polymer foils
 - Kapton®, Mylar® (5-25 foils)
 - separated (avoid contact) by
 - spacer/mesh (Dacron®/Trevira®)
 - embossed, crinkled
 - perforated or not
 - 1 x bka/VDA-net unperf. 1 mil space exposed side
 - 3-23 x VDA/my/VDA-net perf. 0.25 mil internal layers
 - 1 x VDA/my or ka/VDA perf. 1 mil innermost layer
- attachment
 - stand-offs + clip washers
 - sewed/glued velcro
 - dacron yarn
5. Means - PTC - Radiation, Radiators

- **Purpose**
 - cool detectors, optical components, mirrors
 - improve the performances of
 - Scientific P/L (all wavelength ranges)
 - Earth observation (mainly IR)

- **Principle**
 - direct coupling to deep space @2.73 K
 - heat lift decreases in T^4
 - $6 \text{ W/m}^2 \text{ @100K}$

\[Q_{\text{space}} = Q_{\text{electric}} + Q_{\text{losses}} \]
5. Means - PTC - Radiation, Radiators

INTEGRAL STM
5. Means - PTC - Conduction, Increase

- **Structural Material Selection**
 - Al alloy 120-170 W/m.K
 - Ti alloy 7-15 W/m.K
 - steel 10-40 W/m.K

- **Thermal Doublers**
 - spread heat dissipation under unit
 - 1 mm thick Al alloy sheet

- **Straps/Braid (detector to radiator)**
 - Cu, Al alloy wrapped in MLI/SLI
 - short < 10 cm

- **Contact Area**
5. Means - PTC - Conduction, Increase

• Interface Fillers
 - better unit to S/C conductance
 - graphite (Sigraflex®)
 • laminated graphite sheet
 • electrical conductor
 • thickness 0.25 mm
 - silicone elastomer (Cho-therm® 1671)
 • silicone binder, filled with boron nitride particles, reinforced with fibreglass cloth
 • electrical isolator
5. Means - ATC - Louvres

- **Purpose**
 - dumps more/less power to space
 - accommodate extreme variation of energy
 - internal power
 - solar fluxes (interplanetary S/C)
 - with little temperature change
 - save heater power

- **Principle**
 - blades covering a standard radiator
 - 16 blades on bearings rotates
 - opens/closes radiator to deep space
 - variation of IR emittance ε
 - actuator: bi-metallic spring sensing the radiator temperature
5. Means - ATC - Louvres

SENER Louvre on ROSETTA* PFM

Louvres on CASSINI-HUYGENS

*without Solar Panels
5. Means - ATC - Heaters

- **Purpose**
 - additional source of heat inside S/C
 - replace power when unit is switched-off
 - warm up dormant units prior to swon
 - control temperature and gradient
5. Means - ATC - Heaters

ROSETTA FM Heaters

Battery 2

Battery 3

TC 391

PCU

ROSETTA FM ROSINA DPU

heaters

heaters
5. Means - ATC - Heaters

ROSETTA FM OSIRIS PEM-H

ROSETTA FM Thruster 12A

- self-redundant heaters
- FCV

glue

self-redundant heaters
5. Means - ATC - Heat Pipes

- **Purpose**
 - transport heat by convection with small ΔT
 - avoid temperature gradients

- **Principle**
 - liquid vaporizes at evaporator
 - gas flows to cold end
 - gas condensates at cold end
 - liquid returns by capillary forces
5. Means - ATC - Heat Pipes

Telecom Panel Heat Pipe (Swales)

Ø 12 mm

bi-tube

saddle